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Abstract. The majority of railway accidents happen due to derailment.
Buckling and Hogging are two important track defects that can easily
cause a derailment. While the buckling defect is characterized by lat-
eral misalignment of the tracks, the hogging defect is characterized by
vertical misalignment of the tracks. Therefore, these defects are visually
detectable from far itself. In this paper, we present a vision-based solu-
tion to prevent railway accidents through the detection of any of such
misalignments. To the best of our knowledge, there hardly any publicly
available dataset to help with this problem; therefore, we introduce a
new dataset named TrackDefect to help in such detections. There are
numerous pre-trained networks (as feature extractors) and learning al-
gorithms available for leveraging. We proposed an optimal predictive
modeling approach over all the combinations possible for further testing
and deployment, instead of just proposing one combination. In this way,
we manage to claim our vision-based potential derailment system to be
an optimal one. Our proposed optimal system attains about 98% test
accuracy.

Keywords: Buckling - Hogging - Railways - Vision - Detection - Clas-
sification - Images.

1 Introduction

In most countries, the railway system is the cheapest and most reliable trans-
portation system. Millions of people travel through trains everyday. Although
trains are considered safer compared to other transportation modes on the
ground, railway accidents do happen. Derailment is one of the most frequent
ways such accidents happen. A train is said to be derailed if one or more cars or
wagons run off track [7]. Derailment is a serious problem for the railway mode of
transportation as they cause a large number of deaths, injuries, loss of money and
public confidence in the railway system. According to the Association of Amer-
ican Railroads, the issues responsible for the train accidents consist of defective
tracks, faulty pieces of equipment and human errors [15]. The accidents due to a
faulty track contribute to a large percentage of the total accidents [15]. The rail
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defects due to a faulty track include corrugation or the roaring of rails, hogged
rails, kinks in rails, buckling of rails, damaged rails and wear on rails. These
rail defects can be divided into two categories: (i) Those which are visible from
a far distance like buckling and hogging/cycle top. (ii)Those which need closer
inspection like corrugation of rails, wheel burns, wear and crack on rails, rusted
rails, and loose joints. In this paper, defects that are visible from far away are
taken into consideration: specifically, buckling and hogging. While the buckling
defect is characterized by lateral misalignment of the tracks, the hogging defect is
characterized by vertical misalignment of the tracks. Although, as precautionary
measures, regular manual inspections are done to identify such misalignments,
still derailments do happen due to these defects. We propose a vision-based sys-
tem to detect such misalignments in the tracks. It can help in automating such
inspections or warning the railway drivers of such misalignments from far itself
in the real-time. If such misalignments are visible, our vision-based system can
output the track as defective; otherwise, it outputs the track as normal, as shown
in Fig. 1. While the first track is a normal track, the second and the third have
misalignments caused by buckling and hogging defects, respectively.

Feature = L eletlive s

Feature .
Extractor |::> Classifier

Feature ,—> cl
or

Fig. 1. Our objective is to detect defective rail-tracks. While the first track is normal,
the second and the third have buckling and hogging defects, respectively.

Despite such misalignments being visible from far, it’s very challenging to
model them visually, for we have to segment [27,5, 33,14, 10] out the tracks (as
done in [21]), perform shape analysis [20,24,12,9], etc, which are challenging
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problems in the natural setting. Even if we take help of the supervised [17,13]
learning approach, the feature designing and extraction remains a big concern
still, for it again has to depend upon unreliable segmentation and shape analysis.
Recently, deep learning has received a lot of attention in vision research, for we
can leave the job of feature engineering also with the computers only. However,
it requires large amounts of data to train a network that can generate such
useful features and eventually perform predictions in the hand. Interestingly,
once trained in that way, we can exploit the feature extraction part of such
pre-trained networks for any other problems also as long as they are somewhat
related to the problem for which the pre-trained network was trained at the
first place. And there are many such pre-trained networks available today to
choose from. Same goes with supervised learning algorithms that can make use
of these features to build a detector. Such a setup (pre-trained features + learning
algorithms) at least frees us from the burden of annotating millions of images,
which we would have had to do if we try to build a network from scratch for high
accuracies. We can now get high accuracies even with as little as hundreds of
annotated images. However, even such a dataset is not publicly available. Then,
there is another obvious challenge of choosing the optimal pre-trained network
and optimal supervised learning algorithm to give us an optimal classifier.

Since even hundreds of annotated images are sufficient with the pre-trained
features + learning algorithms approach, we develop a dataset ourselves that con-
tains hundreds of railway-track images with appropriate annotations of whether
they are defective or normal. we name it TrackDefect dataset. Having access to
such a dataset, we can now train using different predictive modeling approaches,
i.e. usage of a particular pre-trained feature and particular learning algorithms,
and also validate them. While both the training accuracy and validation accu-
racy high means less bias error, less difference between the two accuracies means
less variance error. We can model these errors in terms of these two accura-
cies and try to minimize them together to identify an optimal approach. Once
identifies, we can go ahead with testing and deployment.

Through this paper, our main contributions to the scientific community are
as follows: (i) We develop a new dataset named TrackDefect dataset. (ii) We
propose a novel way of arriving at an optimal predictive modeling approach
from the training and validation accuracies. (iii) We are first to try out multiple
feature extractors and multiple learning algorithms to solve the railway track
misalignment problem comprehensively; we try out 36 combinations to be par-
ticular and show that our optimal classifier is indeed the best amongst all. The
rest of the paper discusses our methodology in detail, our experiments and our
conclusion.

2 Related Works

Development in technology led to the implementation various techniques to pre-
vent train accidents. A robotic stick, proposed by [23], detects and characterizes
rolling contact fatigue cracks using combined threshold and signature match al-
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gorithm. [30] proposed a 3D laser-based method for the detection of abrasion,
scratch and peeling of the rail surface using K-means and decision trees. A totally
different approach that uses Acoustic Emission(AE) was used in [34] to detect
rail defects at high speed; they used multivariate acoustic noise cancellation and
variable step-size least mean square to remove noise from waves at high speed.
In [7], the detection of cracks was done using Gabor filter and segmentation
based texture analysis features using AdaBoost. [28] also showed defect detec-
tion using Gabor filter. Another method of crack detection is proposed in [22]
by comparing the image of rail from a dataset containing images of faulty rail
track. Ultrasonic guided waves (UGW) were also utilized to detect defects by in
[16]. Subsequently, the complexity of UGWSs propagation between the medium of
air and rail was addressed in [32], after which UGW method was able to detect
8mm cracks using 40 kHz or above frequency. Signal processing also has been
explored for defect detection , such as in [8], where glassy rail diagram, neuronal
network, and fuzzy logic were.

Specifically, as far as vision-based detection is concerned, [18] propose an
approach where grey-level co-occurrence matrix and LBP are used to obtain
texture features and then binary classification of whether the crack was present
or not in rail track was done using neural network. The railway subgrade de-
fects recognition was done using Feature Cascade, adversarial spatial dropout
Network, non-maximum suppression and R-CNN in [31]. [19] performs real-time
detection of rail surface defects on different speed ranging from 0.5 m/s to 6 m/s
using contour of the direction chain code on morphologically processed image.
[25] detects surface defects by first obtaining only the image of rail excluding
other parts of the image using canny and then detecting the defect using only
the image of rail using pre-trained CNN. [26,29] tries out UAVs (Unmanned
Aerial Vehicles) to solve this problem as well. Although many types of vision-
based solutions have been proposed both through hand made features and deep
learning, none of them try to optimize the solution as such. In this paper we
have proposed a solution and optimized it as well.

3 Methodology

In this section, we discuss our methodology in detail: the way dataset was cre-
ated, the way training/validation processes are performed, the way optimal pre-
dictive modeling approach is chosen, and the way final testing/deployment is
performed.

3.1 Our TrackDefect Dataset

As mentioned earlier, we deal with two defects in this paper: buckling and hog-
ging. Buckling of rails is defined as lateral misalignment of railway tracks as
illustrated in Fig. 2. Buckling occurs due to the longitudinal compressive stress
that builds inside the rail due to the difference in the temperature compared to
the rail neutral temperature (RNT). RNT is the temperature at which the rail is
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in a stress-free state. The weakened condition of the track and the vehicle load
also contribute to buckling, according to [11]. When the train passes through
such laterally misaligned track, the train wheel may lose the track causing the
train to get derailed. Reports in [2,4] show several derailments caused due to
buckling.

Buckling

Fig. 2. Buckling Phenomenon: When there is a development of longitudinal compres-
sive stress (represented by F), the track starts buckling from its original position (shown
by a line)

Rail Joint

O

End of track "A Beginning of track ‘B’

| |

Rail Joint Bent
Downwards

Fig. 3. Hogging Phenomenon: When there is a development of longitudinal compressive
stress (represented by F), the track starts buckling from its original position (shown
by a line)

Hogging of railway tracks occur primarily due to the battering (repeated
hitting) action of the train wheels. It causes the tracks to bend down at their
ends, where tracks are joined to form the continuity. This results in a dip (a
vertical misalignment) at such joints. This phenomenon is illustrated in Fig. 3.
When one such dip occurs in the railway track, the dip causes the train to bounce.
And when a train bounces, it pushes the track downwards while landing. Due to
such pressure, another dip starts to form as well. In this manner, a sequence of
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dips is created as the dip causes train to bounce [6]. The passage of many trains
causes the formed dips to get deeper and deeper upto the point of derailment.
Such a defect is also called cyclic-top due the formation of dips in a cyclic manner.
The reports in [3,1] show derailments occurred due to hogging/cyclic-top rail
defect.

We collect several images of buckled and hogged tracks from the internet
to form defective category of our TrackDefect dataset. Similarly, we also collect
images of normal tracks to form normal category of our dataset. While we keep
30% of our data for testing, the remaining portion is used for training of our
classifier. The exact distribution of our dataset is given in Table 1. In total,
we have 435 images in our dataset with appropriate annotations of defective or
normal.

Table 1. Distribution of our TrackDefect dataset

Train Test
Defective|Normal|Defective| Normal
107 198 46 84

3.2 Predictive Modeling Approaches

Our predictive modeling approach has two components: feature extractor (pre-
trained network) and learning algorithm. There are numerous pre-trained net-
works that can be used as feature extractors. Let F = {f1, f2, -+, fm} denote
the set of m feature extractors we use. Similarly, There are numerous learning
algorithms as well. Let A = {ay,aq,- -, fn} denote the set of m feature extrac-
tors we use. Now, there are m (feature extractors) x n (learning algorithms)
approaches possible. Out of these m x n approaches, there should be an opti-
mal approach that strikes right balance between bias and variance errors caused
while using these approaches.

3.3 Bias and Variance Error Modeling

In order to account for bias error, we need to ensure that the model is not so
simplistic (or is complex). If it’s so simple, it’s difficult to obtain high accuracies,
neither during training nor during validation. [Note: We use cross-validation
strategy for validation]. So, for a given f; and a;, we can assume that the bias
error (denoted by B(fi,a;)) is inversely proportional to the sum of training
(denoted by T'(f;,a;)) and validation (denoted by V(f;,a;)) accuracies:

1

Note that we add a positive value C' to have a definite error when the two
accuracies are absolute 0s. Similarly, in order to account for variance error, we

(1)

B(fi,a;) T
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need to ensure that the model is generic. If it’s generic, both the accuracies
are required to be close. So, for a given f; and a;, we can assume that the
variance error (denoted by S(f;,a;)) is directly proportional to the exponential
of absolute difference between training and validation accuracies:

S(fz‘,aj) o el T(fisa;)=V(fia;)] (2)

Note that we vary it exponentially instead of directly. We do so to match its level
of errors to that of bias error according to its formulation. Let the proportionality
constants for Eqns.(1) and (2) be p, and ps, which will be useful in the later
subsections.

3.4 Total Error

Both the errors are important and need to be considered jointly. We combine
the two errors by multiplying them in the following manner to obtain our total
error €(+):

€(fia5) = B(fi,a;) x S(fi,a;) 3)
If we substitute these errors by their models in terms of the two accuracies, we
get the following:

oy Pb IT(fi,05) =V (fi,0;)]
19 - X S J J 4
i) = T ) T VFna) 10 <P @

In this way, we obtain our total error. In order for both the errors to have the
same contribution, we need to ensure that their ranges are same. While the range
of bias error is (ij_2 ,%), the range of variance error is (ps,ps€). By equating the
minimums and maximums, we can obtain the following relationships:

ps = Ceps. (6)

By dividing the above two equations, we get C' = ef—l, which is 1.164 approxi-

mately. So, we can now write our total error as the following:

PbPs x el T(f1:05)=V (fi,05)] (7)

e(fisa;) = T(fi,a;) +V(fi,a;) +1.164

3.5 Objective

Our objective is to either minimize the total error or maximize its reciprocal. If
we consider maximizing the reciprocal approach, Let X (-) be the error reciprocal
as defined below:

X(fi,a) = (T(fl-, a;) +V(fi,a;) + 1.164) exp” ITUe)=Vifeal (g)

Note that since (ppps) is just a proportionality constant multiplied to the re-
maining and have no role to play in maximizing, we have removed it altogether.
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Now, we need to maximize the error reciprocal over different predictive modeling
approaches to find the optimal approach (fs,a.), as shown below:

(fe,ax) = argmax X(fi, a;) (9)
fie]:,(le.A

The above objective can be achieved through exhaustive search only. That is,
we have to compute our training and validation accuracies for each combination
and search for the best combination that has the maximum error reciprocal.

3.6 Testing and Deployment

Once the predictive modeling approach is finalized through the error reciprocal
X (), we train a model by applying it on the entire training dataset, and then, we
test it on the test dataset. However, as far as deployment is concerned, since more
the data better it is, we apply our optimal predictive modeling approach on the
entire dataset. And to report the deployment accuracy, we apply the leave-one-
out strategy on the entire dataset. The idea is absence of just one example should
not alter the model learned much. So, whatever accuracy we obtain through such
strategy should be equal to the actual accuracy of the deployment model.

4 Experimental Results

In this section, we give the details of experiments done and the results obtained.
This section is divided into two: one is for predictive modeling approach selection,
and the other is for testing and deployment results.

4.1 Predictive Modeling Approach Selection

As mentioned earlier, our predictive modeling approach consists of two com-
ponents: feature extractors and learning algorithms. Specifically, we use Incep-
tionV3, VGG16, VGG19 and SqueezeNet as possible feature extractors. And as
far as learning algorithms are concerned, we use k-Nearest Neighbors (kNN),
Decision Tree (DT), Support Vectors Machine (SVM), Stochastic Gradient De-
scent (SGD), Random Forest (RF), Neural Networks (NN), Naive Bayes (NB),
Logistic Regression (LR) and AdaBoost (AB) as possibilities. So, we have total
4 x 9 = 36 approaches possible, and we need to select the optimal one according
to Eqn.(9). The training and validation accuracies of each approach are given in
Tables 3 and 2, respectively. By accuracy, we mean classification accuracy. From
these two tables, we obtain our error reciprocal X () for each approach in Table 4.
It can be observed from the table that amongst all the 36 approach, VGG16+NN
approach gives the best error reciprocal value, i.e., 1.5027. Therefore, we consider
VGG16+4+NN approach as the required optimal predictive modeling approach.
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Table 2. Cross Validation accuracies of different predictive modeling approaches

SqueezeNet|Inception v3|VGG 16| VGG 19
kNN [0.911 0.898 0.921 0.905
DT |0.836 0.846 0.862 0.826
SVM|0.928 0.925 0.921 0.915
SGD |0.905 0.918 0.944 0.921
RF |0.908 0.872 0.892 0.892
NN [0.931 0.941 0.961 0.951
NB [0.872 0.813 0.875 0.846
LR (0.915 0.928 0.954 0.941
AB (0.843 0.839 0.836 0.800

Table 3. Training accuracies of different predictive modeling approaches

SqueezeNet|Inception v3|VGG 16| VGG 19
kNN |0.944 0.921 0.957 0.954
DT (0.993 0.993 0.987 0.987
SVM|0.970 0.993 0.990 0.974
SGD |1.000 1.000 1.000 1.000
RF [1.000 0.997 0.997 0.990
NN |1.000 1.000 1.000 1.000
NB [0.895 0.869 0.898 0.879
LR (1.000 1.000 1.000 1.000
AB |1.000 1.000 1.000 1.000

Table 4. Our error reciprocal X (+) of different predictive modeling approaches

SqueezeNet|Inception v3|VGG 16| VGG 19
kNN |1.461 1.458 1.467 1.439
DT |1.279 1.296 1.33 1.267
SVM|1.468 1.44 1.435 1.439
SGD |1.395 1.42 1.469 1.425
RF |1.401 1.338 1.374 1.381
NN (1.444 1.464 1.503 1.483
NB |1.432 1.346 1.435 1.398
LR |1.414 1.439 1.489 1.464
AB [1.285 1.278 1.273 1.213
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4.2 Testing and Deployment

Having obtained the optimal predictive modeling approach as VGG16+NN, we
compare its test accuracy on our testing dataset with all other approaches in
Table 5. It can be seen that our optimal approach (VGG16+NN) indeed gives
the best test accuracy amongst all the possible approaches. So, we did find an
optimal approach using our formulation of error reciprocal X (-). We also compare
our optimal approach with other approaches that use the same feature extractor
in terms of different evaluation metrics of classification in Table 6. So, it’s not
just the single metric in which our optimal approach performs the best but in
others as well.

Table 5. Testing accuracies of different predictive modeling approaches

SqueezeNet|Inceptionv3|VGG16| VGG19
kINN [0.931 0.915 0.954 |0.931
DT [0.846 0.854 0.885  |0.877
SVM|0.962 0.923 0.931 0.908
SGD (0.923 0.938 0.954 |0.938
RF |0.931 0.885 0.923 |09
NN [0.954 0.946 0.977 |0.938
NB (0.923 0.877 0.915 |0.892
LR |0.931 0.923 0.954 ]0.962
AB [0.792 0.869 0.846 |0.85

Table 6. Comparison of optimal approach with other approaches that use the same
feature in terms of different evaluation metrics

AUC|CA [F1 Precision|Recall
kNN 0.993 |0.954 |0.953 |0.955 0.954
Tree 0.856 |0.885 |0.885 |0.887 0.885
SVM 0.985 |0.931 |0.931 |0.931 0.931
SGD 0.954 |0.954 |0.954 |0.955 0.954
Random Forest 0.974 |0.923 10.923 |0.923 0.923
Neural Network 0.996|0.977/0.977|0.977 0.977
Naive Bayes 0.935 |0.915 |0.916 |0.916 0.915
Logistic Regression|0.99 |0.954 |0.954 |0.954 0.954
AdaBoost 0.817 |0.846 |0.843 |0.845 0.846

We also report the confusion matrix of the optimal approach on our test
dataset. It can be seen that only 3 out of 130 images have got misclassified, and
the rest are correctly classified. In Figs. 4 and 5, we give sample images that
have been correctly classified as defective and normal, respectively. It’s clear
that our classifier that is built using the optimal predictive modeling approach
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is able to classify the images into defective and normal quite well. However, there
were 3 images for which it couldn’t. We also give those 3 in Fig. 6. One type of
misclassification happened when our classifier got confused between whether it
is a track joining or the buckling defect because both can look similar at times.
The other type happened when the defect is not so acute: It still looks almost
like a proper track. These problems can be eliminated if we can have more data
for learning in order to discriminate such fine details.

Table 7. Confusion Matrix of our approach (VGG16+NN) on the test dataset

Predicted Defective|Predicted Normal
Actually Defective|45 1
Actually Normal 82

no

Fig. 4. Sample images that have been classified as defective by our classifier correctly.

As far as deployment is concerned, we can employ the whole dataset for
learning our deployment model. In order to evaluate how good it is, we employ
Leave-one-out approach on the entire dataset. When we just leave one out, the
absence of just one example may not change deployment model much, but at the
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Fig. 5. Sample images that have been classified as normal by our classifier correctly.

Actual  :Normal Actual  :Normal Actual : Defective
Predicted : Defective Predicted : Defective Predicted : Predicted

Fig. 6. Sample images for which our classifier fails to classify appropriately.
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same time it allows us to test on an unseen data. This leave one out accuracy of
our deployment model is given in Table 8 in terms of various evaluation metrics.

Table 8. Deployment Accuracy: LOO acuracy on the entire Dataset

Evaluation Metrics| AUC|CA [F1 |Precision|Recall
Values 0.989 |0.966|0.965|0.965 0.966

Conclusion

We develop a vision-based potential derailment detection system. We develop
a dataset with images of tracks having defects like buckling and hogging and
the images of tracks that are normal. We name the dataset as TrackDefect. We
extract several features using pre-trained networks and apply different learning
algorithms to search for an optimal approach (we don’t know which feature ex-
tractor and which learning algorithm to use). We develop a novel metric called
error reciprocal by modeling the bias and variance errors in terms of training
and validation accuracies. Whichever approach yields the maximum error recip-
rocal value, we choose that particular approach as optimal one. We found that
to be VGG16+NN in our case. For the same approache, we even obtain best test
accuracy, which suggests that the proposed accuracy does perform the job of se-
lecting the optimal approach. We obtain 97.7% test accuracy on the test dataset.
Also, we obtain 96.6% deployment accuracy using leave-one-out approach on the
entire dataset.
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